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Modern radiotherapy allows for highly conformal dose distributions, especially using techniques 
such as intensity modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT), which 
lead to a decrease in radiation-related toxicity. These techniques are driven by precise segmentations 
of organs at risk and target structures. These segmentations can be performed using manual tools 
but it is tedious and suffers from both interobserver and intraobserver variability. There are a 
number of different semi-automatic and automatic approaches that are generally either atlas-based, 
model-based, or hybrid. Many of these approaches are technically fully automated but the results are 
not always ideal, especially for tissue types that have poor contrast relative to neighboring structures. 
This article describes a summary of the Auto-Segmentation algorithms implemented in Pinnacle³ 
Auto-Segmentation with SPICE. SPICE (Smart Probabilistic Image Contouring Engine) is a fully 
automated hybrid approach which combines several deformable registration algorithms with 
Model-Based Segmentation and probabilistic refinement to accurately segment normal and target 
tissues from head and neck, thorax, prostate, and abdominal CT images. Some results of the 
algorithm have been published.[1,8,9]

Introduction
Intensity modulated radiotherapy (IMRT) and volumetric 
arc therapy (VMAT) have become standard treatment 
methods for many patients around the world. These 
methods offer the ability to apply high therapeutic dose 
to tumors while significantly reducing dose toxicities 
to other organs traditionally plagued by side effects.[1] 
An essential step in enabling these methods is to 
segment or delineate the organs at risk and target 
structures. This procedure, if done manually, is very 
tedious, time-consuming, and subjective, and requires 
a high level of concentration. A recent study documents 

that an average of 2 hours 42 minutes is required to 
fully contour a single head-and-neck patient for IMRT 
or VMAT.[2] In addition to the time taken, manual contours 
are subjected to interobserver and intraobserver 
variability which may even exceed planning and setup 
errors.[3] Automatic segmentation aims to remove most 
of the manual work by providing initial structures that 
require minimal modifications for patient images 
in a consistent manner. There are many challenges 
to automatic segmentation including, but not limited 
to, poor soft tissue contrast, noise, image artifacts, 
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Figure 2  Thorax and head-and-neck algorithm pipeline.

contrast agents, variable field of view, organ shape, 
and personal preference (see Figure 1 for examples 
of shape variations).

Many approaches to automated segmentation have been 
published.[4,5,6,7] Several methods in recent publication 
[1,8,9] have been combined into a single package and 
commercialized under the product name Pinnacle³ 
Auto-Segmentation with SPICE. These methods consist 
of multiple steps generally consisting of an initial 

registration, dense deformable registration, and 
refinement. To obtain the best results, two different 
types of algorithm pipelines have been used – one for 
thorax and head-and-neck anatomies and a separate 
one for the abdominal and prostate anatomies. The 
major differentiators of this method are the high level 
of organ specific refinement, the lack of need to train 
the software as a user, and the simple integrated 
workflow with the planning software.

Prototype versions of the package have been tested 
in the previously mentioned publications and the 
results are summarized in this article. Similar to many 
recent publications,[10,11] the Dice similarity score 
and the mean Hausdorff distance were used for 
quantitative evaluation. 

Methods and materials
Two unique atlas segmentation pipelines were combined 
into SPICE. The first pipeline is customized to delineate 
thorax and head-and-neck patient images (see Figure 2).
For an in-depth look at the pipeline, please refer 
to the publication by Qazi et al.[1]

In general it consists of three main steps: a sparse 
landmark-based deformable image registration, 
a dense deformable image registration, and an individual 
structure refinement step (see Figure 3). 

Figure 1  Examples of typical structure variations in the male pelvis region.
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The first step is a low-dimensional transform determined 
by finding 14 landmark points distributed within the head 
and neck region (see Figure 4). 

These points represent the patient “pose” and compensate 
for global differences between the reference and the 
patient dataset, such as size, flexion of the neck, etc. 
In the second step, the initial transformation is used 
to initialize a dense deformable registration method 
(Enhanced Demons) which further initializes organ-specific 
deformable models. 

The final step is model adaptation and probabilistic 
refinement, the benefits of which are highlighted for 
a parotid gland in Figure 5. First, the Model-Based 
Segmentation (MBS) [12] is used to adapt the organ-specific 
deformable organ models to local image features. 

Figure 3  Axial slices of the probabilistic masks for the mandible (left), brain stem 

(middle), and left parotid (right). Brighter areas correspond to higher probabilities.

Thin plate
spline
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Figure 4  A low-dimensional thin plate spline transform between the atlas and the patient images 

is derived from matching 14 landmark points distributed in the head and neck region.

Figure 5  Example of a parotid gland segmentation 

result from Demons deformable image registration 

alone (blue) which shows obvious overlap with 

the mandible and patient boundary. When Demons 

is followed by Model-Based Segmentation 

probabilistic refinement (yellow), these errors 

are no longer present.
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Figure 6  Results of feature-based organ-specific image enhancement 

using voxel classification.

Then, depending on the structure, the models 
are refined or deformed within some uncertainty 
bounds defined by a probabilistic mask. The 
refinement uses the patient anatomy and voxel 
classification to compensate for the residual local 
differences (Figure 6). 

The second pipeline is customized to delineate 
prostate and abdominal images. It consists 
of three main steps: global positioning, 
organ-specific positioning, and structure 
refinement (See Figure 7 and Figure 8). 

Figure 7  Pipeline for liver Auto-Segmentation (male pelvis is similar).

Figure 8  Segmentation sequence from left to right: 

1. RsT, 2. Coarse deformable registration, 3. MBS.
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Figure 10  Organ probability maps for rectum, bladder, and prostate based on RsT registration.[9]

The first step performs a rotation, translation, and 
isotropic scaling (RsT) registration of a tissue probability 
atlas to a tissue classified target image (Figure 9).

In the second step, all the organs are positioned 
simultaneously using the tissue classified image and 
organ-specific probability maps or p-maps (Figure 10). 

Figure 9  Upper row (left to right): (a) CT planning image u(x), (b) derived bone probability map 

P(t = bone | u(x)), (c) trained bone probability atlas q(x | t = bone). Lower row (left to right): trained 

atlases for tissues: air, fat, water, and bone.[9]
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Initially, an RsT transform is used followed 
by a diffeomorphic deformation with 
a small number of degrees of freedom 
(e.g., 8 degrees of freedom for liver). Surface 
mesh models of the organ are deformed to 
the probability map using a thin plate spline. 
At first, a small number of control points 
are used and they are iteratively increased 
to shrink-fit to the probability map while 
avoiding other organs (see Figure 11). 
The third step uses MBS to attract the 
surface mesh triangles to trained 
image features.

In some cases structures are optimized 
as a group (see Figure 12) and if there 
are any organ overlaps they are resolved 
as a post-processing step.

Figure 12  Four-organ models grouped for MBS segmentation. Combined 

model solves problems with local ambiguities due to poor or variable soft 

tissue contrast.[9]

Figure 11  Example of liver results: a mean surface model of the liver positioned with similarity 

transform in different images of varying FOV, content, and contrast from different scanners.[8]
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For each treatment area, the algorithm 
segments a group of structures 
(see Table 1). 

Because the pipelines require a large amount 
of organ-specific training and configuration, 
this process is currently unsuitable for users 
to add new structures or variations based 
on their own patients. 

To accommodate common differences in the 
way structures are drawn, some structures 
have variations provided. A list of the 
structure variations is provided in Table 2. 

The head and neck structures were primarily 
based on ground truth from Princess 
Margaret Hospital, Toronto, Canada. 
Several other variations (e.g., parotid and 
submandibular glands) were added later. 
The manual delineations of lymph node 
levels (I–IV) and four important organs 
at risk in the head and neck region, 
mandible, brainstem, submandibular, and 
parotid glands were done by an expert, 
following the guidelines in the publication 
by Grégoire et al.[13] The other variations 
were trained using ground truth data from 
the University Medical College Groningen, 
The Netherlands, and Odense University 
Hospital, Denmark. Thorax ground truths 
were based on structures summarized 
from various patients from London Regional 
Cancer Center, Canada; Washington 
University, St. Louis, USA; Odense 
University Hospital; University Medical 
Center Groningen; and University Hospital 
Würzburg, Germany. Learning for pelvis 
and liver used a much larger sample of data 
from many institutions and was not based 
on any single set of ground truth patients. 

Head and neck
Brain One brain variation includes the brainstem 

and one variation doesn’t
Parotids Three different sets of ground truth data were used 

to generate the probabilistic masks and atlas meshes
Submandibular glands Three different sets of ground truth data were used 

to generate the probabilistic masks and atlas meshes
Spinal cord and canal Spinal cord is an erosion of the spinal canal
Thorax
Heart and heart short Designed to match a range of ground truth data
Spinal cord and canal Spinal cord is an erosion of the spinal canal
Prostate
Prostate vs. prostate small Prostate small is a 2 mm lateral erosion of the prostate
Rectum vs. rectum short The rectum was trained based on the common extents 

of one set of ground truth data and the rectum short 
was truncated to match another set of ground truth data

Liver  

No variations

Table 2  Summary of structure variations by anatomy.

Table 1  Atlases and structures that can be tailored to suit individual operators.

Head and neck 
• Brain 
• Brainstem 
• Brain with brainstem 
• Glottis 
• Left and right acoustic nerves 
• Left and right cochleae 
• Left and right eyes 
• Left and right eye lens 
• Left and right neck nodes 
• Left and right optic nerves  
• Left and right parotids 
• Left and right parotids with ducts 
• Left and right submandibular glands 
• Mandible 
• Optic chiasm 
• Oral cavity 
• Pharyngeal constrictor 
• Skin (external) 
• Soft palate 
• Spinal canal and spinal cord 
• Sublingual glands 
• Thyroid gland 

Lung/thorax 
• Carina 
• Heart 
• Left and right lungs 
• Skin (external) 
• Spinal canal and spinal cord 
• Trachea 
 
Abdomen 
• Left and right kidneys 
• Liver 
• Skin (external) 
• Spinal canal and spinal cord 

Male pelvis 
• Bladder 
• Prostate 
• Rectum 
• Left and right femoral heads 
• Seminal vesicles 
• Skin (external) 

SPICE atlases and structures 
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Validation
Several validation studies were published based on alpha 
versions of the SPICE algorithms. These publications 
use two common metrics used to evaluate the quality 
of segmentations: volume overlap fraction or the Dice 
similarity coefficient (DSC),[14] and a geometrical metric, 
the median symmetric Hausdorff distance (HD), which 
is evaluated slicewise. The DSC measure is defined by 
the following equation:

DSC = 2 | Vexpert  ∩ Vautomatic |
/ | Vexpert | + | Vautomatic |

where Vexpert is the expert delineation, and Vautomatic 
is the result of Auto-Segmentation. The DSC measure 
varies between 0-1, where 0 implies no overlap and 
1 represents two identical regions with perfect overlap. 
Statistical volumetric measures such as DSC can give 

a good estimate of expert agreement; however, it 
is insensitive to the exact position of errors in the 
segmentation. Hausdorff distance, on the other hand, 
estimates the degree of mismatch by measuring the 
distance between the expert and auto-segmented contours.

The head and neck publication by Qazi et al.[1] used
the same patients as two segmentation challenges[10,11] 
that predated it. The results from CMS, the winner 
of both challenges, was summarized and compared to 
the results in Qazi paper in Figure 13. The publications 
compared the Dice similarity score (DSC) and the mean 
Hausdorff distance between auto-segmented and expert 
drawn contours for the mandible, brainstem, and parotid 
glands.  The comparison shows that the differences 
between the two algorithms for all organs are within 
a few percent for DSC scores and within 1 mm for 
Hausdorff distances.

The male pelvis atlas was tested using the DSC metric 
and presented at ESTRO9. The mean DSC scores 
were all above 0.75 and visual inspection suggested all 
structures were useful except for five seminal vesicles 
(Table 3). 

Figure 13  Average DICE score (left) and average mean slicewise 

Housdorff distance (right) for ten patients derived from literature. 

[1,10,11]

Organ No. 
cases

Dice 
score

Bladder 76 0.91
Prostate 75 0.78
Rectum 16 0.89
Seminal vesicles 21 0.80

Table 3  Summary of prostate segmentation 

evaluation.[9]
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Figure 14  Upper row: expert ground truth (each organ individually). 

Lower row: Automatic segmentation with combined model. 

Dice score: 0.95 bladder, 0.81 prostate, 0.94 rectum, 0.86 seminal vesicles.
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Figure 15  On the x-axis, the average Dice coefficient between the automatic 

and each of the 10 manual delineations are shown for each of the 15 patients. 

On the y-axis, the same calculation is performed by selecting one manual 

delineation and comparing this to the remaining delineations (manual and 

automatic). This is done for each manual delineation, producing 10 averaged Dice 

coefficient per patient. Points above the y=x line are manual delineations which, 

on average, agree more with the remaining delineation than the automatic 

delineation, and opposite for points below the y=x line.[15]

Figure 14 shows an example of physician-drawn 
contours compared to the auto-segmented contours.

A multi-center analysis of heart segmentations for use 
in breast cancer patients was performed.[15] The heart 
was outlined for 15 patients by 10 observers from five 
centers in Denmark and the UK. A comparison of the 
DSC scores for automatic segmentation and manual 
segmentations with an average of 0.88 was obtained – 
as shown in Figure 15. The scatter around the y=x line 
shows that, in terms of DSC, the SPICE segmentations 
are indistinguishable from the group of manual 
segmentations. 

Spatial distance maps are shown in Figure 16. 
The main deviation between automatic and manual 
heart segmentations is in the cranial region at the 
base of the heart. This deviation falls within the rather 
large interobserver variability present in this region. 
The fraction of distance deviation lying within the 
interobserver variation was calculated with a mean 
value of 0.83 (range: 0.67–0.90).

Figure 16  Distance between median manual heart segmentation and the 

automatic segmentation by SPICE is shown on the bottom. Half the interdecile 

range (distance between 10th to 90th percentile) in manual segmentations is 

shown in the middle. Each of these maps are mean maps for all 15 patients. 

Deviation between the automatic and median manual segmentation should be 

compared with the variation in manual segmentations.[15]

Anatomical directions

Interobserver variation

SPICE
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Product highlights
A number of commercial auto segmentation solutions 
are available, but they usually are limited by lack 
of integration with the planning and simulation software, 
the need for tedious user atlas training, user parameter 
and atlas selection, lack of sophisticated refinement 
(direct reliance on accurate deformable image 
registration), etc. 

SPICE avoids these limitations and provides the user with:
• Accurate, fully automatic contouring for the head  

and neck, thorax, male pelvis, and abdomen without 
requiring user algorithm training

• Simple workflow with limited user intervention
• Complete integration with the data base and planning 

system but independent process so the user interface   
is free for other work

Figures 17 – 20  Random sample of patients segmented using the SPICE algorithm for each anatomical atlas with no additional edits.
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Figures 21 – 24  Random sample of patients segmented using the SPICE algorithm for each anatomical atlas with no additional edits.

11



References 
1. Qazi A et al. “Auto-segmentation of normal and target structures 
in head and neck.” Medical Physics 38, no. 11 (October 2011):
6160-6170. 

2. Harari PM, Song S, and Tomé WA. “Emphasizing conformal avoidance 
versus target definition for IMRT planning in head-and-neck cancer.” 
Int. J. Radiat. Oncol., Biol., Phys. 77 (2010):950-958.

3. Hess E and Weiss CF. “The impact of gross tumor volume (GTV) 
and clinical target volume (CTV) definition on the total accuracy 
in radiotherapy.” Strahlenther. Onkol 179 (2003):21-30.

4. Costa MJ, Delingette H, et al. “Automatic Segmentation of Bladder 
and Prostate Using Coupled 3D Deformable Models.” Edited by 
Ourselin N, Ayache S, et al. MICCAI (Springer) 4791 (2007):252-260.

5. Dowling J, Fripp J, et al. “Fast Automatic Multi-atlas Segmentation 
of the Prostate from 3D MR Images.” Edited by Dowling A, Madabhushi J, 
et al. Prostate Cancer Imaging (Springer) 6963 (2011):10-21.

6. Li W, Liao S, et al. “Learning Image Context for Segmentation 
of Prostate in CT-Guided Radiotherapy.” Edited by G., Martel G, 
Fichtinger AL, et al. MICCAI (Springer) 6893 (2011):570-578.

7. Heimann T, van Ginneken B, et al. “Comparison and Evaluation 
of Methods for Liver Segmentation From CT Datasets.” 
IEEE Trans. Med. Imaging 28, no. 8 (2009):1251-1265.

8. Vik T, Bystrov D, et al. “A New Method for Robust Organ Positioning 
in CT Images.” ISBI (IEEE), 2012.

9. Bystrov D, et al. “Simultaneous Fully Automatic Segmentation 
of Male Pelvic Risk Structures.” ESTRO Poster, 2012.

10. Pekar V, Allaire S, Kim JJ, and Jaffray DA. “Head and neck 
autosegmentation Challenge.” MIDAS Journal 703 (2009).

11. Pekar V, Allaire S, Qazi AA, Kim JJ, and Jaffray DA. “Head and neck 
auto-segmentation challenge: Segmentation of the parotid glands.” 
Medical Image Analysis for the Clinic: A Grand Challenge 
(CreateSpace), 2010:273-280.

12. Pekar V, McNutt TR, and Kaus MR. “Automated model-based 
organ delineation for radiotherapy planning in prostatic region.” 
Int. J. Radiat. Oncol., Biol., Phys. 60 (2004):973-980.

13. Grégoire V, Eisbruch A, Hamoir M, and Levendag P.  “Proposal 
for the delineation of the nodal CTV in the node-positive and 
the post-operative neck.” Radiother. Oncol 79 (2006):15-20.

14. Dice LR. “Measures of the amount of ecologic association between 
species.” Ecology 26 (1945):297–302.

15. Lorenzen EL, and Brink C. “Automatic Segmentation of Heart 
Evaluated With Multi-Institution Inter-Observer Variation.” 
ESTRO Poster, 2012.

Philips Healthcare is part of Royal Philips Electronics

www.philips.com/healthcare
healthcare@philips.com

Printed in The Netherlands
4522 962 86221 * JUN 2012

© 2012 Koninklijke Philips Electronics N.V.
All rights are reserved.

Philips Healthcare reserves the right to make changes in specifications 
and/or to discontinue any product at any time without notice or obligation 
and will not be liable for any consequences resulting from the use of this 
publication.

Please visit www.philips.com/SPICE




