Dedicated to successful NIV
Specifications

The Philips Respironics V60 ventilator combines Respironics’ ventilation expertise with Philips focus on simplifying advanced health care. The result is exceptional noninvasive ventilation with an invasive ventilation fallback and an interactive display that helps simplify patient management.

1. Patient types
 - Adult
 - Pediatric (≥20kg)

2. Modes
 - Standard
 - CPAP (continuous positive airway pressure)
 - S/T (spontaneous with timed backup)
 - PCV (pressure control ventilation)
 - AVAPS (average volume assured pressure support)
 - Optional
 - PPV (proportional pressure ventilation)*

3. Settings

<table>
<thead>
<tr>
<th>Settings</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-Flex</td>
<td>OFF, 1 – 3</td>
</tr>
<tr>
<td>CPAP</td>
<td>4 – 25cmH₂O</td>
</tr>
<tr>
<td>EPAP</td>
<td>4 – 25cmH₂O</td>
</tr>
<tr>
<td>IPAP</td>
<td>4 – 40cmH₂O</td>
</tr>
<tr>
<td>I-time</td>
<td>0.30 – 3.00sec</td>
</tr>
<tr>
<td>Max P (AVAPS maximum IPAP)</td>
<td>6 – 40cmH₂O</td>
</tr>
<tr>
<td>Min P (AVAPS minimum IPAP)</td>
<td>5 – 30cmH₂O</td>
</tr>
<tr>
<td>O₂ (oxygen percent)</td>
<td>21 – 100%</td>
</tr>
<tr>
<td>Ramp time</td>
<td>OFF, 5 – 45min</td>
</tr>
<tr>
<td>Rate (respiratory rate)</td>
<td>4 – 60bpm</td>
</tr>
<tr>
<td>Rise (rise time)</td>
<td>1 – 5</td>
</tr>
<tr>
<td>Triggering and cycling</td>
<td>Auto-adaptive (Auto-Trak)</td>
</tr>
<tr>
<td>AVAPS target tidal volume</td>
<td>200 – 2,000ml btps</td>
</tr>
<tr>
<td>Max E</td>
<td>0 – 100cmH₂O/l</td>
</tr>
<tr>
<td>Max R</td>
<td>0 – 50cmH₂O/l/s</td>
</tr>
<tr>
<td>PPV%</td>
<td>0 – 100%</td>
</tr>
<tr>
<td>Max P (PPV maximum pressure limit)</td>
<td>5 – 40cmH₂O</td>
</tr>
<tr>
<td>Max V (PPV maximum volume limit)</td>
<td>200 – 3,500ml</td>
</tr>
</tbody>
</table>

* May not be available in all markets
4. Modes with settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>CPAP</th>
<th>S/T</th>
<th>PCV</th>
<th>AVAPS</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPV%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V₂ (tidal volume)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-Flex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramp time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Monitored parameters

Patient data window
- Breath phase/trigger indicator: Spont, timed, exhale
- PIP: 0 – 50cmH₂O
- Patient/total leak: 0 – 200l/min btps
- Patient trigger: 0 – 100%
- Respiratory rate: 0 – 90bpm
- Ti/Ttot: 0 – 91%
- Minute volume: 0 – 99.0l/min btps
- Tidal volume: 0 – 3,500ml btps

Waveform window
- Pressure waveform: 0 – 50cmH₂O
- Flow waveform: -240 – 240l/min btps
- Volume waveform: 0 – 3,500ml btps

6. Alarms

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Adjustable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hi Rate (high respiratory rate alarm)</td>
<td>5 – 90bpm</td>
</tr>
<tr>
<td>Lo Rate (low respiratory rate alarm)</td>
<td>1 – 89bpm</td>
</tr>
<tr>
<td>Hi V₂ (high tidal volume alarm)</td>
<td>200 – 3,500ml</td>
</tr>
<tr>
<td>Lo V₂ (low tidal volume alarm)</td>
<td>Off, 5 – 1,500ml</td>
</tr>
<tr>
<td>HIP (high inspiratory pressure alarm)</td>
<td>5 – 50cmH₂O</td>
</tr>
<tr>
<td>LIP (low inspiratory pressure alarm)</td>
<td>OFF, 1 – 40cmH₂O</td>
</tr>
<tr>
<td>Lo V₈ (low minute ventilation alarm)</td>
<td>OFF, 0.1 – 99l/min</td>
</tr>
<tr>
<td>LIP T (low inspiratory pressure delay time)</td>
<td>5 – 60sec</td>
</tr>
</tbody>
</table>

7. Other settings

- Alarm volume: 1 – 10 (relative scale)
- Brightness: 1 – 5 (relative scale)
- Exhalation port selection: • DEP (disposable exhalation port) • Whisper Swivel • PEV (plateau exhalation valve) • Other • None (no inline circuit exhalation port)
- Interface selection: ET/Trach, 1, 2, 3, Other
- Screen lock: Off, On
- Auto-Trak Plus: Optional*
- Trigger*: Normal, 1 – 7
- E-cycle*: -2, -1, Normal, 1 – 6

8. Environmental

Temperature
- Operating conditions: +5 – +40°C
- Storage conditions: -20 – +50°C

Relative humidity
- Operating conditions: 15 – 95% (non-condensing)
- Storage conditions: 10 – 95% (non-condensing)

Barometric pressure
- Operation and storage: 79.9 – 101.1kPa (600 – 765mmHg)

Altitude
- Operation and storage: 600 to 765 mmHg (approximately -61 to 1951m (-200 to 6400 ft) relative to sea level)

* May not be available in all markets

The print quality of this copy is not an accurate representation of the original.
9. Communication
Philips IntelliBridge EC10
Philips IntelliBridge EC40/80
Philips VueLink Open Interface
Respi-Link remote diagnostic system
Bernoulli® management system
Capsule DataCaptor™ device interface driver
GE Healthcare (Centricity Critical Care)
Cerner CareAware® iBus™
Other monitoring and patient information systems
RS232 digital and analog

10. Electrical
External
AC voltage 100 – 240 VAC
AC frequency 50/60Hz
AC power 300 VA
Battery (optional)
Nominal voltage 14.4V
Capacity 11.0Ah
Battery chemistry Lithium-ion
Operating time 6 hours in normal conditions

11. Physical
Weight 11.7kg (25.7lb) with optional battery
10.6kg (23.3lb) without optional battery
Dimensions 33.7cm (13.3in) height
39.4cm (15.5in) width
42.9cm (16.5in) depth

12. Regulatory compliance
2nd edition standards
EN 60601-1-2 Electromagnetic Compatibility Requirements and Tests
EN 55011 Radiated and Conducted RF Disturbance Characteristics--Limits and Methods of Measurement (Level A)
EN 55014-1 Electromagnetic Compatibility Requirements. Part 1: Emissions
EN 61000-3-2 Limits for Harmonic Current Emissions
EN 61000-3-3 Limitation of Voltage Changes, Fluctuations, and Flicker Emissions
EN 61000-4-2 Electrostatic Discharge Immunity Test (8/15KV)
EN 61000-4-3 Radiated Electromagnetic Field Immunity Test (10V/M)
EN 61000-4-4 Electrical Fast Transient/Burst Immunity Test
EN 61000-4-5 Surge Immunity Test
EN 61000-4-6 Immunity to Conducted RF Disturbances (10V)
EN 61000-4-8 Power Frequency Magnetic Field Immunity Test
EN 61000-4-11 Voltage Dips. Short Interruptions, and Voltage Variations Immunity Tests
MIL-STD 461E RE101 Electromagnetic Field Generation (Army Level)
ANSI/AAMI ES 60601-1 Medical electrical equipment - Part 1: General requirements for basic safety and essential performance
WEEE recycling directive Compliant with the WEEE recycling directive

3rd edition standards
IEC 60601-1; Ed. 3.1 Medical electrical equipment -- Part 1: General requirements form basic safety and essential performance
IEC 60601-1-2; Ed. 3.0 Medical electrical equipment – Part 1-2: General requirements for basic safety and essential performance - Collateral Standard: Electromagnetic disturbances
IEC 60601-1-6; 2013 Medical electrical equipment – Part 1-6: General requirements for safety
IEC 60601-1-8; Ed. 2.1 Medical electrical equipment – Part 1-8: General requirements for safety
IEC 62366; 2007 + A1: 2004 Medical devices – Application of usability engineering to medical devices
ISO 14971; 2007 Medical devices – Application of risk management to medical devices
EN ISO 14971; 2012 Medical devices – Application of risk management to medical devices
ISO 80601-2-12; 2011 Medical electrical equipment – Particular requirements for basic safety and essential performance of critical care ventilators
ISO 60529; Ed. 2.1 Degrees of protection provided by enclosures (IPX1 @ 0° tilt)
IEC 62304; Ed. 1.0 Medical device software - Software life cycle processes
ANSI/AAMI ES 60601-1 Medical electrical equipment - Part 1: General requirements for basic safety and essential performance
WEEE recycling directive Compliant with the WEEE recycling directive

Please visit www.philips.com/V60

The print quality of this copy is not an accurate representation of the original.